Edit distance-based kernel functions for structural pattern classification
نویسندگان
چکیده
A common approach in structural pattern classification is to define a dissimilarity measure on patterns and apply a distance-based nearest-neighbor classifier. In this paper, we introduce an alternative method for classification using kernel functions based on edit distance. The proposed approach is applicable to both string and graph representations of patterns. By means of the kernel functions introduced in this paper, string and graph classification can be performed in an implicit vector space using powerful statistical algorithms. The validity of the kernel method cannot be established for edit distance in general. However, by evaluating theoretical criteria we show that the kernel functions are nevertheless suitable for classification, and experiments on various string and graph datasets clearly demonstrate that nearest-neighbor classifiers can be outperformed by support vector machines using the proposed kernel functions. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
Automatic learning of cost functions for graph edit distance
Graph matching and graph edit distance have become important tools in structural pattern recognition. The graph edit distance concept allows us to measure the structural similarity of attributed graphs in an error-tolerant way. The key idea is to model graph variations by structural distortion operations. As one of its main constraints, however, the edit distance requires the adequate definitio...
متن کاملA Graph Matching Based Approach to Fingerprint Classification Using Directional Variance
In the present paper we address the fingerprint classification problem with a structural pattern recognition approach. Our main contribution is the definition of modified directional variance in orientation vector fields. The new directional variance allows us to extract regions from fingerprints that are relevant for the classification in the Henry scheme. After processing the regions of inter...
متن کاملString representations and distances in deep Convolutional Neural Networks for image classification
Recent advances in image classification mostly rely on the use of powerful local features combined with an adapted image representation. Although Convolutional Neural Network (CNN) features learned from ImageNet were shown to be generic and very efficient, they still lack of flexibility to take into account variations in the spatial layout of visual elements. In this paper, we investigate the u...
متن کاملGeneralized graphlet kernels for probabilistic inference in sparse graphs
Graph kernels for learning and inference on sparse graphs have been widely studied. However, the problem of designing robust kernel functions that can effectively compare graph neighborhoods in the presence of noisy and complex data remains less explored. Here we propose a novel graph-based kernel method referred to as an edit distance graphlet kernel. The method was designed to add flexibility...
متن کاملLearning state machine-based string edit kernels
During the past few years, several works have been done to derive string kernels from probability distributions. For instance, the Fisher kernel uses a generative model M (e.g. a hidden markov model) and compares two strings according to how they are generated by M . On the other hand, the marginalized kernels allow the computation of the joint similarity between two instances by summing condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 39 شماره
صفحات -
تاریخ انتشار 2006